Dehn Filling in Relatively Hyperbolic Groups
نویسندگان
چکیده
We introduce a number of new tools for the study of relatively hyperbolic groups. First, given a relatively hyperbolic group G, we construct a nice combinatorial Gromov hyperbolic model space acted on properly by G, which reflects the relative hyperbolicity of G in many natural ways. Second, we construct two useful bicombings on this space. The first of these, preferred paths, is combinatorial in nature and allows us to define the second, a relatively hyperbolic version of a construction of Mineyev. As an application, we prove a group-theoretic analog of the Gromov-Thurston 2π Theorem in the context of relatively hyperbolic groups.
منابع مشابه
Peripheral Fillings of Relatively Hyperbolic Groups
A group-theoretic version of Dehn surgery is studied. Starting with an arbitrary relatively hyperbolic group G we define a peripheral filling procedure, which produces quotients of G by imitating the effect of the Dehn filling of a complete finite-volume hyperbolic 3-manifold M on the fundamental group π1(M). The main result of the paper is an algebraic counterpart of Thurston’s hyperbolic Dehn...
متن کاملResidual Finiteness, Qcerf, and Fillings of Hyperbolic Groups
We prove that if every hyperbolic group is residually finite, then every quasi-convex subgroup of every hyperbolic group is separable. The main tool is relatively hyperbolic Dehn filling.
متن کاملFilling Inequalities for Nilpotent Groups
We give methods for bounding the higher-order filling functions of a homogeneous nilpotent group and apply them to a family of quadratically presented groups constructed by S. Chen[9]. We find sharp bounds on some higher-order filling invariants of these groups. In particular, we show that groups with arbitrarily large nilpotency class can have euclidean n-dimensional filling volume and give an...
متن کاملExceptional Dehn filling
This Research in Team workshop focused on several problems in the theory of exceptional Dehn fillings in 3dimensional topology. Dehn filling is the construction in which you take a 3-manifoldM , with a distinguished torus boundary component T , and glue a solid torus V to M via some homeomorphism from ∂V to T . The resulting manifold depends only on the isotopy class (slope) α on T that is iden...
متن کاملLocal Rigidity of Hyperbolic 3-manifolds after Dehn Surgery
It is well known that some lattices in SO(n, 1) can be nontrivially deformed when included in SO(n+1, 1) (e.g., via bending on a totally geodesic hypersurface); this contrasts with the (super) rigidity of higher rank lattices. M. Kapovich recently gave the first examples of lattices in SO(3, 1) which are locally rigid in SO(4, 1) by considering closed hyperbolic 3-manifolds obtained by Dehn fil...
متن کامل